SUBELEMENT T1 – FCC Rules, descriptions, and definitions for the Amateur Radio Service, operator and station license responsibilities - [6 Exam Questions - 6 Groups]

2018-2022

T1B - Frequency allocations; Emission modes; Spectrum sharing; Transmissions near band edges; Contacting the International Space Station; Power output.

T1B03 [97.301(a)]: Which frequency is within the 6 meter amateur band? 300 million meters per second / ? meters per cycle = ? million cycles per second (million hertz) 300 / 6 meters (per cycle) = 50 MHz (6 meter band is 50.0 – 54.0 MHz) 52.525 MHz - - - (page 7-9) T1B04 [97.301(a)]: Which amateur band are you using when your station is transmitting on 146.52 MHz? 300 million meters per second / ? million cycles per second (million hertz) = ? meters per cycle

300 / 146.52 (MHz) = 2.04 meters (per cycle)

(2 meter band is 144.0 – 148.0 MHz)

2 meter band -	-	-	-	-	-	-	-	-	-	-	-	(page 7-9)
----------------	---	---	---	---	---	---	---	---	---	---	---	------------

SUBELEMENT T5 – Electrical principles: math for electronics; electronic principles; Ohm's Law [4 Exam Questions - 4 Groups]

2018-2022

T5A – Current and voltage: terminology and units, conductors and insulators, alternating and direct current.

T5A01: Ele	ctrical c	current i	is measu	ured in	which o	f the fo	llowing	units?					
Amperes	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-1)
T5A02: Ele	ctrical p	ower is	s measu	red in v	which of	the fol	lowing	units?					
Watts -	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-7)
T5A03: Wh	at is the	e name f	for the f	low of	electron	is in an	electric	circuit	?				
Current	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-1)
T5A04: Wh	at are th	ne units	of elect	trical re	sistance	e?							
Ohms	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-5)
T5A05: Wh	at is the	e electri	cal term	for the	e electro	motive	force (I	EMF) th	at caus	es electi	ron flow	/?	
Voltage	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-1)
T5A06: Wh	at is the	e unit of	freque	ncy?									
Hertz	-	-	-	-	-	-	-	-	-	-	-	-	(page 2-3)
T5A07: Wh	y are m	etals ge	enerally	good c	onducto	ors of ele	ectricity	?					
They have	many f	ree elec	etrons	-	-	-	-	-	-	-	-	-	(page 3-5)
T5A08: Wh	ich of t	he follo	wing is	a good	electric	al insul	ator?						
Glass -	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-5)
T5A09: Wh	ich of t	he follo	wing de	escribes	alterna	ting cur	rent?						
Current the	at alter	nates b	etween	positiv	e and n	negative	e direct	ions	-	-	-	-	(page 3-1)
T5A10: Wh	ich tern	n descri	bes the	rate at	which e	lectrica	l energy	is used	1?				
Power -	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-7)

SUBELEMENT T5 – Electri	cal principles: math for electronics; electronic pr [4 Exam Questions - 4 Groups] 2018-2022	rinciples; Ohm's Law
T5A11: What type of current flow is opp	posed by resistance?	
Direct current Alternating current RF current		
All these choices are correct-		(page 3-5)
T5A12: What describes the number of ti	mes per second that an alternating current makes	s a complete cycle?
Frequency		(page 2-3)
T5B - Math for electronics: conversion	n of electrical units, decibels	
T5B01: How many milliamperes is 1.5 a	amperes?	
	amperes X 1000 = milliamperes	
	.5 amperes X 1000 = 1,500 milliampers	
1,500 milliamperes		(page 2-2)
T5B02: Which is equal to 1,500,000 her	tz?	
	hertz \div 1000 = kiloHertz	
1,5	00,000 hertz ÷ 1000 = 1,500.000 kilohertz	
1500 kHz		(page 2-2)
T5B03: Which is equal to one kilovolt?		
	kilovolt X 1000 = volts	
	1.000 kilovolt X 1000 = 1,000.000 volts	
One thousand volts		(page 2-2)
T5B04: Which is equal to one microvolt	?	
	microvolt \div 1,000,000 = volts	
1.	microvolt \div 1,000,000 = 0.0000001 volts	
One one-millionth of a volt		(page 2-2)
T5B05: Which of the following is equiv	alent to 500 milliwatts?	
	milliwatts \div 1000 = watts	
	500. milliwatts \div 1000 = 0.500 watts	
0.5 watts		(page 2-2)
2022-2026 Technician Class Special Question Pool - March	7 2022.doc - 3 -	7/19/2022

SUBELEMENT T5 – Electrical principles: math for electronics; electronic principles; Ohr [4 Exam Questions - 4 Groups] 2018-2022	n's Law
T5B06: Which is equal to 3000 milliamperes?	
milliamperes \div 1000 = amperes	
3,000. milliamperes \div 1000 = 3.000 amperes	
3 amperes	(page 2-2)
T5B07: Which is equal to 3.525 MHz?	
megahertz X 1000 = kilohertz	
3.525 megahertz X 1000 = 3,525.000 kilohertz	
3525 kHz	(page 2-2)
T5B08: Which is equal to 1,000,000 picofarads?	
picofarads \div 1,000,000 = microfarads	
1,000,000. picofarads ÷ 1,000,000 = 1.000000 microfarads	
1 microfarad	(page 2-2)
T5B09: Which decibel value most closely represents a power increase from 5 watts to 10 watts?	
Power DB = $10 * LOG$ (Change)	
Change = (to watts / from watts) = $(10 \text{ watts } / 5 \text{ watts}) = 2$	
Power DB = $10 * LOG(2) = 10 * 0.3010299957 = 3.010299957$	
(Rule: If power doubles or halves, it changes by $\pm 3 \text{ dB}$)	
3 dB	(page 4-8)
T5B10: Which decibel value most closely represents a power decrease from 12 watts to 3 watts?	
Power DB = $10 * LOG$ (Change)	
Change = (to watts / from watts) = $(3 \text{ watts } / 12 \text{ watts}) = 0.25$	
Power DB = $10 * LOG (0.25) = 10 * -0.6020599913 = -6.020599913$	
(Rule: If power quadruples or fourths, it changes by $\pm 6 \text{ dB}$)	
-6 dB	(page 4-8)
T5B11: Which decibel value represents a power increase from 20 watts to 200 watts?	
Power DB = $10 * LOG$ (Change)	
Change = (to watts / from watts) = $(200 \text{ watts} / 20 \text{ watts}) = 10$	
Power DB = $10 * LOG (10) = 10 * 1 = 10$	
(Rule: If power increase by tens or reduces by tenths, it changes by $\pm 10 \text{ dB}$)	
10 dB	(page 4-8)
2022-2026 Technician Class Special Question Pool - March 7 2022.doc - 4 -	7/19/2022

SUBEL	EMENT	' T5 – E	Electric	al princi [4 E	iples: m xam Qu 2	hath for lestions	electron - 4 Gro	nics; ele oups]	ectronic	princip	les; Ohi	n's Law
T5B12: Which is e	qual to 2	8,400 k	kHz?		Z	016-202	22					
	-			kilo	hertz ÷	1000 =	megal	hertz				
			28,4	00 . kilo	hertz ÷	1000 =	= 28 . 40	0 mega	hertz			
28.400 MHz -	-	-	-	-	-	-	-	-	-	-	-	(page 2-2)
T5B13: Which is e	qual to 2	425 MI	Hz?									
				Meg	ahertz ·	÷ 1000	= giga	hertz				
			2,4	25 . meg	ahertz	÷ 1000	= 2.42	5 gigah	ertz			
2.425 GHz -	-	-	-	-	-	-	-	-	-	-	-	(page 2-2)
T5C - Capacitance definition and uni	e and ind ts; Calcu	ductan ılating	ce tern power	ninolog	y and u	ınits; R	adio fr	equenc	y defini	tion an	d units	; Impedance
T5C01: What descr	ribes the	ability	to store	e energy	in an e	electric	field ca	lled?				
Capacitance -	-	-	-	-	-	-	-	-	-	-	-	(page 3-8)
T5C02: What is the	e unit of o	capacit	ance?									
The farad -	-	-	-	-	-	-	-	-	-	-	-	(page 3-8)
T5C03: What descu	ribes the	ability	to store	e energy	in a m	agnetic	field ca	alled?				
Inductance -	-	-	-	-	-	-	-	-	-	-	-	(page 3-8)
T5C04: What is the	e unit of i	inducta	ince?									
The henry -	-	-	-	-	-	-	-	-	-	-	-	(page 3-8)
T5C05: What is the	e unit of i	impeda	ince?									
The ohm -	-	-	-	-	-	-	-	-	-	-	-	(page 3-10)
T5C06: What does	the abbr	eviatio	n "RF"	mean?								
Radio frequency s	signals of	f all ty _l	pes	-	-	-	-	-	-	-	-	(page 2-4)
T5C07: What is the	e abbrevi	ation fo	or mega	ahertz?								
MHz	-	-	_	-	-	-	_	_	-	-	-	(page 2-3)

2022-2026 Technician Class Special Question Pool - March 7 2022.doc

(page 2-3) 7/19/2022

SUBELEMENT T5 – Electrical principle	es: math for el	ectronic	s; electr	onic pr	inciples	; Ohm'	s Law
[4 Exa	- 2018-2022	4 010up	55]				
T5C08: What is the formula used to calculate electric	cal power (P)	in a DC	circuit?	,			
	$\frac{P}{E \mid I}$				$P = E^{2}$ $E = P \cdot I$ $I = P \cdot I$	* I ÷ I ∸ F	
D		T 4 F	,		1 - 1	• 11	
P =	E*I or P	= 1 * E					
P = I x E. Power (P) equals voltage (E) multiplied	l by current ([)	-	-	-	-	(page 3-7)
T5C09: How much power is delivered by a voltage	of 13 8 volts I)C and a	current	of 10 a	mneres	2	
1000). How mach power is derivered by a voltage	$\frac{P}{E \mid I}$		i current		$P = E^{3}$	∗ I	
P = E * I = 13.8	volts * 10 . 0 an	nperes =	= 138.0	0 watts			
138 watts		-	-	-	-	-	(page 3-7)
T5C10: How much power is delivered by a voltage	of 12 volts DC	and a c	urrent o	f 2.5 ar	nperes?		
	$\frac{P}{E \mid I}$				P = E *	* I	
P = E * I = 12.0) volts * 2.5 a	mperes	= 30.0	watts			
30 watts		-	-	-	-	-	(page 3-7)
T5C11: How much current is required to deliver 120) watts at a vo	ltage of	12 volts	DC?		-	
	$\frac{P}{E \mid I}$				I = P ÷	·Ε	
$I = P \div E = 12$	$20 \text{ watts} \div 12 \text{ w}$	volts =	10 ampo	eres			
10 amperes		-	-	-	-	-	(page 3-7)
T5C12: What is impedance?							
The opposition to AC current flow		-	-	-	-	-	(page 3-10)
T5C13: What is the abbreviation for kilohertz?							
kH7	. -	_	_	_	_	_	(nage 2-3)
	-	-	-		-	-	(page 2-3)

SUBELEMENT T5 – Electrical princip [4 Exa	les: math for electro am Questions - 4 Gro 2018-2022	nics; electronic principles; Ohm's Law oups]
T5D – Ohm's Law; Series and parallel circuits		
T5D01: What formula is used to calculate current in	n a circuit?	E = I * R
	I R	$I = E \div R$ $R = E \div I$
	$I = E \div R$	

-

-

-

_

T5D02: What formula is used to calculate voltage in a circuit?		
$\frac{E}{I R}$	$E = I * R$ $I = E \div R$ $R = E \div I$	
E = I * R		
E = I x R. Voltage (E) equals current (I) multiplied by resistance (R)		(page 3-5)
T5D03: What formula is used to calculate resistance in a circuit?		

I = E / R. Current (I) equals voltage (E) divided by resistance (R)

E	E = I * R
I R	$I = E \div R$
•	$R = E \div I$

_		_		_
- D	_	- 12	•	•
ĸ	=	- C .	_	
		_	•	

R = E / I. Resistance (R) equals voltage (E) divided by current (I)	-	-	-	-	(page 3-5)

T5D04: What is the resistance of a circuit in which a current of 3 amperes flows when connected to 90 volts?

					$\frac{E}{I \mid R}$						I * R E ÷ R E ÷ I		
				R =	E÷I	= 90 vo	olts ÷ 3	ampere	es = 30	ohms			
30 ohms	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-6)

T5D05: What is the resistance in a circuit for which the applied voltage is 12 volts and the current flow is 1.5 amperes?

							<u> </u>				E = I = R =	I * R E ÷ R E ÷ I	
				R =	E÷I =	= 12 vo	lts ÷ 1.5	5 amper	es = 8	ohms			
8 ohms	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-6)

(page 3-5)

S	UBELE	MENT	T5 – H	Electrica	al princi [4 Ez	ples: m xam Qu 20	ath for e estions -	lectron 4 Gro	ics; ele ups]	ctronic	principle	es; Ohn	n's Law
T5D06: Wha	it is the	resistan	ce of a	circuit	that dra	ws 4 an	$\frac{E}{I \mid R}$	rom a 1	2-volt	source?	E = I I = E R = F	* R E ÷ R E ÷ I	
				R =	E÷I :	= 12 vo	lts ÷ 4 a	mperes	s = 3 c	hms			
3 ohms	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-6)
T5D07: Wha	t is the	current	in a ci	rcuit wi	th an ap	plied vo	oltage of <u>E</u> I R	5 120 vo	olts and	a resist	ance of E = I I = E R = F	80 ohm * R E ÷ R E ÷ I	s?
				I = E	$\div R =$	120 vol	ts ÷ 80 c	ohms =	= 1.5 ar	nperes			
1.5 amperes	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-6)
T5D08: Wha	it is the	current	throug	h a 100	-ohm re	sistor co	$\frac{E}{I R}$	l across	s 200 vo	olts?	E = I I = E R = F	* R E ÷ R E ÷ I	
				I = E	.÷R =	200 vo	Its \div 100) ohm	= 2 an	nperes			
2 amperes	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-6)
T5D09: Wha	t is the	current	throug	h a 24-o	ohm res	istor co	$\frac{E}{I \mid R}$	across	240 vol	lts?	E = I I = E R = F	* R E ÷ R E ÷ I	
				I = E	÷R =	240 vol	ts ÷ 24 o	ohms =	= 10 ar	nperes			
10 amperes	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-6)
T5D10: Wha	it is the	voltage	across	a 2-ohi	n resiste	or if a c	$\frac{E}{I \mid R}$	f 0.5 an	nperes 1	flows th	rough it E = I I = E R = F	? * R E ÷ R E ÷ I	
				E =	I*R =	= 0.5 a	nperes '	* 2 ohn	ns = 1	volt			
1 volt -	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-6)
T5D11: Wha	t is the	voltage	across	a 10-ol	nm resis	stor if a	current of $\frac{E}{I \mid R}$	of 1 am	ipere flo	ows thro	ough it? E = I I = E R = F	*R E÷R E÷I	
				E =	1*R =	= 1 amp	ere * 1() ohms	= 10	volts			
10 volts 2022-2026 Technic	- cian Class Si	- pecial Ques	- stion Pool	- - March 7 2	- 2022.doc	-	- - 8 -	-	-	-	-	-	(page 3-7) 7/19/20

T5D12: Wh	SUBEL	LEMEN e voltag	T T5 – I	Electric	al princi [4 E hm resis	iples: n xam Q 2 stor if a	hath for uestions 018-202 current	electro - 4 Gro 2 of 2 ar	nics; ele oups] mperes	ectronic flows th	principle rough it	es; Ohr ?	n's Law
		_					$\frac{E}{I \mid R}$		-		E = I I = E R = I	* R E ÷ R E ÷ I	
				E =	I*R =	= 10 oł	nms * 2 a	ampere	es = 20) volts			
20 volts	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-7)
T5D13: In v	which t	ype of c	circuit is	DC cu	rrent the	same	through	all con	nponent	s?			
Series -	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-2)
T5D14: In v	which t	ype of c	eircuit is	voltage	e the san	ne acro	ss all co	mpone	nts?				
Parallel	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-2)

SUBELEMENT T6 – ELECTRONIC AND ELECTRICAL COMPONENTS [4 Exam Questions - 4 Groups] 2022-2026

T6A - Fixed and variable resistors; Capacitors; Inductors; Fuses; Switches; Batteries

T6A01: What	t electri	cal com	ponent	is used	to oppos	se the f	low of c	urrent i	in a DC	circuit	?		
Resistor	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-8)
T6A02: Wha	it type o	f compo	onent is	often u	sed as ar	n adjust	able vo	lume co	ontrol?				
Potentiomet	er	-	-	-	-	-	-	-	-	-	-	-	(page 3-8)
T6A03: Wha	t electri	cal para	meter is	s contro	olled by a	a poten	tiometer	?					
Resistance	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-8)
T6A04: Wha	ıt electri	cal com	ponent	stores e	energy in	an ele	ctric fiel	ld?					
Capacitor	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-8)
T6A05: Wha	it type o	f electri	cal com	ponent	consists	of two	or more	e condu	ictive su	irfaces s	separate	d by an	insulator?
Capacitor	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-8)
T6A06: Wha	it type o	f electri	cal com	ponent	stores e	nergy i	n a mag	netic fie	eld?				
Inductor	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-8)
T6A07: Wha	t electri	cal com	ponent	is usual	lly const	ructed a	as a coil	of wire	e?				
Inductor	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-8
T6A08: Wha	t is the	functior	n of an S	SPDT s	witch?								
A single circ	uit is sw	vitched l	between	one of	two oth	er circu	iits	-	-	-	-	-	(page 3-13)
T6A09: Wha	ıt electri	cal com	ponent	is used	to protec	ct other	· circuit	compo	nents fro	om curr	ent over	loads?	
Fuse -	-	-	-	-	-	-	-	-	-	-	-	-	(page 3-12)
T6A10: Whi	ch of the	e follow	ing batt	ery is r	echargea	able?							
Nickel-metal Lithium-ion	hydride	e											
All of these	choices	are cor	rect	-	-	-	-	-	-	-	-	-	(page 5-17)

SUBELEMENT T6 – ELECTRONIC AND ELECTRICAL COMPONENTS [4 Exam Questions - 4 Groups] 2022-2026

T6A11: Which of the following battery chemistries is not rechargeable?

T6C - Circuit diagrams: use of schematics, basic structure; Schematic symbols of basic components

T6C01: What is the name of an electrical wiring diagram that uses standard component symbols?

SU	UBELEMENT T6 –	ELECTRC [4 Exam (ONIC AND Questions	D ELEC - 4 Grou	CTRICAI ups]	LCOM	PONEN	NTS	
			<u>2022-202</u> 5 ►	6	7 8 ///	9 -/// 10	• C	D	
T6C06: What is compo	nent 6 in figure T2?		Figure T	-2					
Capacitor			-	-	-	-	-	-	(page 3-14)
T(007, What is a second									
16C07: what is compo	nent 8 in figure 12?								
Light emitting diode -			-	-	-	-	-	-	(page 3-14)
T6C08: What is compo	nent 9 in figure T2?								
Variable resistor -			-	-	-	-	-	-	(page 3-14)
T6C09: What is compo	nent 4 in figure T2?								
Transformer			-	-	-	-	-	-	(page 3-14)
T6C10: What is compo	nent 3 in figure T3?	1	2 }	3 Figure					
Variable inductor -				-	-	_		_	(nage 3-14)
·									(Puge 5 1 1)
T6C11: What is compo	nent 4 in figure T3?								
Antenna			-	-	-	-	-	-	(page 3-14)
T6C12: Which of the fo	ollowing is accuratel	y represent	ted in elec	ctrical sc	chematic	s?			
Component connection 2022-2026 Technician Class Species	ns al Question Pool - March 7 202	 22.doc	- 12	-	-	-	-	-	(page 3-14)